TEERATHAM (TJ) VITCHUTRIPOP

(804)-928-4949 | tv9fm@virginia.edu | tjvitchutripop.github.io

232 Harrison, Charlottesville, VA 22904

EDUCATION

University of Virginia, School of Engineering and Applied Science

B.S. Computer Science and B.A. Philosophy | GPA: 3.884

Relevant Coursework: Machine Learning; Robotics for Software Engineers; Linear Algebra; Probability; Statistics; Multivariable Calculus; Algorithms; Program and Data Representation; Non-Classical Logic

RESEARCH EXPERIENCE

Carnegie Mellon University, Robotics Institute	Pittsburgh, PA	
RI Summer Scholar (RISS) – Robots Perceiving and Doing (R-PAD) Lab	Jun. 2023 – Present	
Advised by David Held		
• Proposed and developed novel unsupervised architecture, <i>TaskSeg</i> , for segmenting task-relevant objects in robot manipulation tasks through video demonstrations.		
 Applied optical flow on video demonstration frames to generate pseudo-label masks used to train a segmentation model for a downstream robot manipulation policy. 		
 Performed comparative experiments with a model trained on ground truth data, showing comparable results (~5% mIoU difference on most tasks), and ablation studies on different flow aggregation methods. 		
University of Virginia, Link Lab	Charlottesville, VA	
Research Assistant – Collaborative Robotics Lab	Aug. 2021 - Present	
Advised by Tariq Iqbal		
 Proposed and developed novel deep reinforcement learning algorithm, <i>LASSO</i>, to tackle dynamic goal manipulation tasks using an autoencoder and contrastive learning-based architecture, addressing the representation learning bottleneck of RL algorithms and improving upon state-of-the-art performance. 		

- Conducted experiments in custom OpenAI Gym MuJoCo environments to benchmark task performance.
- Developed behavior trees in ROS using PyTrees for robotic control in human-robot demonstrations.

PUBLICATIONS & PRESENTATIONS

T. Vitchutripop, J. Wang, and D. Held, TaskSeg: Task-Specific Object Segmentation Through Dem	onstration,
2023 RISS Working Papers Journal [paper] [video] [poster]	
M. S. Yasar, T. Vitchutripop, and T. Iqbal, LASSO: Learning Latent Policies via State Space Mode	ling (submitted)
Poster Presentation	
Robotics Institute Summer Scholar Showcase, Carnegie Mellon University	August 2023
TaskSeg: Task-Specific Object Segmentation Through Demonstration [poster]	
Oral Presentation	
Undergraduate Engineering Research and Design Symposium, University of Virginia	April 2023
LASSO: Learning Latent Policies via State Space Modeling [slides]	
Oral Presentation	
ACC Meeting of the Minds Conference, Virginia Tech (1 of only 5 selected to represent UVA)	March 2023
LASSO: Learning Latent Policies via State Space Modeling [slides]	
HONORS & GRANTS	
Robotics Institute Summer Scholar (RISS) [NSF REU Program] (7.8% acceptance rate) Robotics Institute, Carnegie Mellon University	June 2023
Louis T. Rader Outstanding Undergraduate Research Award	May 2023
Department of Computer Science, University of Virginia	
Best Oral Presentation (1 st place)	April 2023
2023 Undergraduate Engineering Research and Design Symposium, University of Virginia	

Charlottesville, VA Expected May 2024 Office of Citizen Scholar Development, University of Virginia

SKILLS & LANGUAGES

Programming Languages: Python, Java, C++, C, JavaScript, TypeScript, Assembly Machine Learning and Robotics Frameworks: PyTorch, TensorFlow & Keras, OpenAI Gym, MuJoCo, ROS, OpenCV, Scikit-Learn, NumPy, Pandas, PyTrees, PyTorch Lightning, RLBench Other Tools and Frameworks: GitHub, Bitbucket, Docker, Weights and Biases, Singularity, Slurm, Visual Studio Code, JupyterLab, Linux, React, Node.js, Airtable, Excel, MATLAB, Autodesk Fusion 360

PROFESSIONAL EXPERIENCE

National Science Foundation

Policy and Data Science Intern – UVA-MIT Policy Internship Program

- Contributed towards efforts to publish and open-source innovation and entrepreneurship application data for the NSF Engines program, developing data cleaning pipelines, data visualization prototypes, and a publicfacing database for collaboration in Airtable used by 5000+ users and featured in multiple publications [e.g., Forbes, Heartland Forward, SSTI].
- Leveraged state-of-the-art large language models and natural language processing techniques to extract entities from records and reports, unveiling companies/startups spun off from NSF-funded research.

Interop.io (formerly Cosaic)

Software Engineering Intern

- Designed headless UI unit tests for React components (increasing coverage from 0% to 50%) and end-to-end regression tests for 2 different parts of the product.
- Refactored existing legacy React components, converting them to TypeScript for build-time type safety and importing them into Storybook to support modular testing.

TEACHING EXPERIENCE

CS 2120 Discrete Mathematics and Theory 1, University of Virginia Charlottesville, VA

Teaching Assistant

- Planned and co-lectured classes on quantifier logic and entailment to 100+ students.
- Guide and support students on course content during in-class activities, office hours, and after lectures.
- Strategize with professors and other teaching assistants about optimal ways to deliver class content.

STS 3020 Science and Technology Policy for Interns, University of Virginia

Teaching Assistant

- Supported instructor in program recruitment and course design + operations. .
- Coordinated and moderated alumni guest speaker panels.
- Developed and maintained UVA Policy Internship Program website.

LEADERSHIP & SERVICE

HooHacks, University of Virginia

Marketing Committee Co-Chair

- Lead committee members and collaborate with HooHacks executive board on planning marketing campaign and strategy for HooHacks, UVA's premier student-run hackathon with 1000+ participants.
- Established stronger relationships with organizations for underrepresented groups in STEM and minority serving institutions to make events more inclusive.

Charlottesville Debate League (CDL), University of Virginia

Teacher (2020-Present) | Head Teacher (2022)

- Mentored 30+ middle school students on extemporaneous speaking and public forum debate.
- Discuss with teachers on best ways to implement curriculum and maintain high student engagement.
- Analyze effective teaching strategies with other CDL teachers at 10+ schools.

Feb. 2021 - Present

Charlottesville, VA

Aug. 2022 - May 2023

Charlottesville, VA Sept. 2020 - Present

Charlottesville, VA

Sept. 2020 – Present

Alexandria, VA

June 2022 – Feb 2023

Charlottesville, VA

June 2021 – Aug. 2021